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Free-surface oscillations in a slowly rotating liquid 

By JOHN W. MILES 
Department of Mathematics, Institute of Advanced Studies 

Australian National University, Canberra 

(Received 22 April 1963) 

Free-surface oscillations of a liquid relative to an equilibrium state of uniform 
rotation about the vertical of an axisymmetric container are considered for small 
a = w2u/g, where w is the angular velocity of rotation and a the cylinder radius. 
A variational approximation is used to obtain explicit results, with an error of 
O(c$), for axisymmetric gravity and inertial waves in a flat-bottomed circular 
cylinder; these results are found to be in agreement with observations reported 
by Fultz (1962). The first-order (in w )  effects of rotation on asymmetric waves 
in a circular cylinder also are determined. 

1. Introduction 
We consider small, free-surface oscillations of a liquid relative to an equili- 

brium state of uniform rotation about the vertical (z-axis) with angular velocity 
w .  We shall assume that the container is a surface of revolution, say 

z/d =f(r/a), (1 .1)  

where d is a typical depth, a a typical radius, and z and r cylindrical polar co- 
ordinates; in the particular case of a flat-bottomed circular cylinder, we shall 
choose d as the mean depth and a as the radius (so that the volume is ;rru2d). 
The equilibrium free-surface then is given by 

(1.2) 

(1.3) 

z = z&r) = z,(O) + &(wZ/g) r2, 

zo( 0 )  = d - $( w2/g) u2 

where zo( 0 )  is determined by the constraint of constant volume. This yields 

for a circular cylinder with bottom a t  z = 0. We shall impose the restriction 

Two types of oscillations are possible, namely gravity waves and inertial waves, 
the frequencies of which are O(g*) and O ( w )  as w -+ 0. The inertial waves tend to 
purely internal motions, unaccompanied by free-surface displacement, in this 
limit. Let 

z,(O) > 0. 

S = d/u (1.4) 

(1.5) be a depth parameter and a = w2a,/g = ~ ; ( r ) l ~ = ~  

a measure of the rotational effects; then, at  least in so far as 6 is not too small, 
appropriate, dimensionless forms for the angular frequencies are 

C T ~  = (g/a)* G(cc, S), ( 1 . 6 ~ 4  6 )  

If a < 6 < 1, (gd/u2)* would be a more convenient reference for C T ~ ;  if 6 = O(0r) 

gw = wQ(01, 8). 
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the distinction between gravity and inertial waves becomes blurred; the domain 
6 < a is excluded by the restriction x,(O) > 0, which implies a < 46 for the circu- 
lar cylinder. 

Both types of oscillations have been considered previously by Lamb ( 1932, 
fjfj306-12), following earlier work by Kelvin. Lamb based his analysis on the 
shallow-water approximation (6 < 1) and the approximation of the mean 
free surface by a plane (planar approximation). We remark that inertial oscilla- 
tions do not appear in the shallow-water formulation for a liquid of uniform 
depth. Thus Lamb’s analysis for the circular cylinder yields only two modes of 
oscillation (both of which are gravity waves in the present sense) for each pair of 
radial and azimuthal wave numbers, whereas his analysis for a paraboloid yields 
three modes, of which one is an inertial oscillation. Miles (1959) extended Lamb’s 
formulation by removing the shallow-water, but not the planar, approximation. 
The presumption in these analyses is that the planar approximation should 
be valid as a + 0. 

Fultz (1962) has remarked that the planar approximation is necessarily in- 
consistent for axisymmetric gravity wavest in the sense that both the rotation- 
induced shift in gg and the free-surface slope are of the same order of magnitude 
-namely O(a) as a + 0. Fultz was led to this conclusion by the disagreement 
between his own experimental results and Lamb’s theoretical result 

where CT,, denotes the frequency for w = 0. Subsequently, Platzman (1963) 
carried out a calculation including free-surface slope and found 

r; = 4 + 4 w 2  (S+ O ) ,  (1.7) 

in agreement with experiment. 
Murty (1 963) has since carried out a rather extensive analysis for axisymmetric, 

shallow-water oscillations in a cylindrical tank with a paraboloidal bottom. 
Miles & Ball (1963) have considered both axisymmetric and asymmetric shallow- 
water oscillations in a paraboloid and have obtained finite-amplitude solutions 
for two important (axisymmetric and asymmetric) modes. 

We present here a corrected (vis-6,-vis Miles 1959) formulation for the general 
problem ( f j  2 below) and a variational integral of this formulation (0 3). We shall 
use this result primarily to  obtain ( 9  4) explicit approximations, with an error of 
O(a2) ,  to both gg and crw for axisymmetric oscillations in a flat-bottomed circular 
cylinder. 

We also shall present approximations, accurate through terms of O(w) ,  to 
both gg and for asymmetric waves in a circular cylinder (the planar approxi- 
mation is, of course, consistent with these results). The approximation to ug 
constitutes a generalization of previous results of Rayleigh (1903) and Miles 
(1959) for the limiting cases 6 -+ 0 and co, respectively. The approximation for 
C T ~ ,  which appears to be new, is presented in implicit form for arbitrary S and in 
explicit expansions for either small or large 6. 

problem for a rotating liquid (Miles 1963). 
f The writer had been led to this same conclusion in considering the Cauchy-Poisson 
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Finally, we remark that the numerical results for asymmetric inertial waves 
given in Table 2 of Miles (1959) are valid only for c1. + 0. More importantly, the 
limit point (of eigenvalues) encountered there was a spurious consequence of 
the inconsistent formulation. 

2. Formulation 
Let (r ,  8, z> be cylindrical polar co-ordinates in a reference frame that rotates 

with the tank. Assuming small, inviscid disturbances of angular frequency cr 
and azimuthal wave-number m, we may derive the perturbation pressure p -pa  
and the perturbation velocity (u, v, ui> from the acceleration potential x according 
to 

(where p is the liquid density) and 
p-l(p -pn) + g ( z  - zo) = X(r, 8, z ,  t )  = $(r, z )  ei(‘t+m@, (2.1) 

( 2 . 3 )  

(2.4) 

We can restrict m and w to be positive without loss of generality. 
The kinematic boundary condition at the surface of (1.1) is 

w = 6f’u (2 = df). (2.8) 

The linearized boundary conditions at  the free surface z = zn(r) + <(r, 19, t ) ,  where 
P = Po, are 

x = g <  and w=-= Dt . icrc+z;u ( z =  z o + c  + zn). (2.6a, b )  

Eliminating 6 between (2.6a, b )  and substituting u and w from (2.2) into (2.5) 
and (2.6b) and z,,(r) from (1.2) into (2.6b), we obtain 

Dz 

$z-6(l -p2)-1f’($~+pmr-1q5)  = 0 ( z  = df (r /a) )  (2.7) 
and cr2$ - g$z + w2( 1 -p2)-l (r$r+pm$) = 0 ( z  = zo(r ) ) .  (2.8) 

The derivation of (2.1)-(2.6a) is given in Miles (1959),  but the term zhu in 
(2.6b) was neglected, and the free-surface boundary condition given there con- 
tained only the first two terms in (2.8). 

We now have the following eigenvalue problem: given the container shape 
f ( r / a )  and values of the parameters 01 and 6, find those values of cr-or, equiva- 
lently, p-for which there exist non-trivial solutions to the partial differential 
equation (2.3) and the boundary conditions (2.7) and (2.8). 

3. Variational approximation 
Multiplying (2.3) by $, integrating over a meridian cross-section of the liquid, 

and invoking (2.7) and (2.8) after appropriate partial integrations, we obtain 
the variational integral 

J.z=df(v,a) 42dz 
CD = (crZ/g) ( 1 - p2 + 4p3m) J. q52r dr - pm 

uX=uXo(r) 

-/J[$: + (m/r)2 $2 + ( 1  -p2)  $3 rdrdz .  (3.1) 
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The first integral is over a meridian segment of the free surface, the second 
over a meridian segment of the container, and the third over a meridian cross- 
section of the liquid; the respective limits of integration for the circular 
cylinder are (0, a) ,  (0, z,(a)), and (0 ,  a ;  0, zo(r)) .  We may show, by conventional 
techniques, that the integral @ is stationary with respect to first-order variations 
of # about the true solution to (2.3), subject to the boundary conditions (2.7) 
and (2.8). 

We shall find it convenient to pose trial solutions that satisfy the differential 
equation (2.3) exactly and to invoke the variational principle only in respect to 
the boundary conditions (2.7) and (2.8). We then may transform (3.1) to 

In  the particular case of the circular cylinder, we may rewrite the last integral 
in (3.2) according to 

4. Axisymmetric waves in a circular cylinder 
We turn now to the special case of axisymmetric (m = 0) waves in a circular 

cylinder. A suitable trial solution, which satisfies the differential equation (2.3) 
and the boundary condition (2.7) at both r = a and z = 0, is 

# = A,#,, 4, = a-4 J,(kr/a) cosh ( m / a ) ,  (4.la, ,  0 )  
k 

where the summation is over the roots of 

J,(k) = 0,  

K = (1  -p-& k, 
(4.3) 

(4.3) 

and we have included the factor a-* for dimensional convenience. We remark 
that the $, form a complete set for the domain 0 < z < zo(r),  0 < r < a and that 
the members of this set are orthogonal in, and only in, the limit a -+ 0. 

Substituting (4.1) into (3.2) and requiring @ to be stationary with respect to 
independent variations of each of the A ,  would yield a set of linear equations in 
the A,; requiring the determinant of these equations to vanish then would 
yield the eigenvalue equation for (T. Such a procedure permits the eigenvalues 
to be determined to any desired accuracy, but we shall restrict the subsequent 
development to the simplest approximation of this type, namely, that obtained 
by retaining only a single term in the expansion. 
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Let @k be that approximation to 0 obtained by substituting $ = $k from 
(4.lb) into (3.2)) namely 

(4.4a) 

+a! g) J,!, 6) J, E)) cosh2 r?) rdr. (4.4b) 

Remarking that the solution $ = + O(a) (4.5 a) 

is capable of satisfying the free-surface boundary condition (2.8) as a -+ 0, 
requiring the corresponding approximation 0 = Ak@k to be stationary with 
respect to a first-order variation of A,, and invoking the variational principle 
(which implies that the error in @ at the stationary point must be of the order of 
the square of the error in $), we obtain the eigenvalue equation? 

0 = 0,+O(a2). (4.5b) 

We therefore shall approximate CD, by expanding the integrand of (4.4b) in 
powers of a! and neglecting terms of O(a2). Substituting zo(r) from (1.2) and (1.3)) 
expanding the hyperbolic functions about z,(r) = d, and setting r = ax, we obtain 

@ k  = cosh2 (K8 )  ((1 -p2) [(a2a/g) - K  tanh (K&)]J:(kX) 1: 
+akxJo(kx)J,!,(kx))xdx - fak2/01(x2--)Jg(kx)xdx+O(a!2). (4.6) 

Carrying out the integrations [see Erddyi, Magnus, Oberhettinger & Tricomi, 
1954, 9 19.1 (39)) for the last], invoking (4.2), and equating @k to zero, we obtain 

(4.7) (cr2a/g) - K tanh ( ~ 8 )  + &aK2sech2 ( ~ 8 )  + O(a2) = 0. 

As anticipated in (1.6)) the frequencies given by (4.7) must be either O(g/a)* 

Considering first gravity waves, we have the zero’th approximation 
or O(w)  as a! + 0. 

c$ = ug + O(w2),  cr: = (kg/a) tanh (k8).  (4.8a, b) 

It follows that p = O(a4) and hence that we may approximate K according to 

K = k( 1 -,LL2)-4 = k[ l+  2((1J/r,)~ $- O(aZ)]. (4.9) 

Substituting (4.9) into (4.7) we obtain 

cr: = cr; + 2w2[1+ 2k6csch (2k8) - &c2 sech2 (k8)l + O(a2g/a). (4.10) 

t The determinant of the aforementioned linear equations in A ,  would comprise the 
diagonal elements Dk and, in consequence of the orthogonality of the 4, for a = 0, off- 
diagonal elements of O(a) .  It therefore would be equal to the product of these diagonal 
elements plus terms of O(a2) ,  and requiring it to vanish would yield (4.5 b)  without recourse 
to the variational principle. 
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The gravest mode, which may be expected to dominate observed motions, 
corresponds to the smallest root of (4.2), namely k = 3.832. Substituting this 
value into (4. lo), we obtain the following numerical results: 

d - = o  
U 

1 
8 

.- 1 
4 

- 1 
2 

-. 3 
4 co 

2 
___ (+2-ao = 0.694 0.688 0.651 0.555 0.514 4 

4w2 

These are within the experimental scatter, for a/& < 0.5, of the observations 

Turning to inertial waves, we have the zero’th approximations 
reported by Fultz (1962, figure 12). 

(+: = 0, tanh ( ~ ~ 8 )  = 0 (a  + 0), (4.11u, b )  

which imply K O S  = i pn  ( p  = 1,2,  ...) (4.1%) 

and (2w/CTu)2 = 1 + (kS/pn-)2 (a  --f 0). (4.12b) 

We may regard (4.12b) as a first approximation for the frequency in the sense 
that ( 4 . 1 1 ~ )  is the zero’th approximation. Substituting (4.12u, b )  into the first 
and third terms of (4.7), we obtain the second approximation 

(4.13) 

where S,, = S/pn = d/pna. (4.14) 

The observations of axisymmetric inertial waves reported by Fultz (1962, 
figure 4) were for rather small values of a/S, and the difference between the 
approximations of (4.12b) and (4.13) is within the experimental scatter. It does 
appear, however, that the term of O(a/S)  in (4.13) might be of interest in some 
geophysical applications. 

We emphasize that the foregoing approximations break down for 6 = O(a)  
as a + 0, in which neighbourhood (cf. remarks following (1.6) above) 

-f k2S/a (6 -+ 0). (4.15) 

This non-uniform validity in the neighbourhood of 6 = 0 is borne out by the 
divergence between (4.10) and the observations reported by Fultz (1962, 
figure 12) for non-small values of a/&. We also recall that inertial waves degener- 
ate to null motions as S --f 0 (cf. the remarks in third paragraph of § 1 above). 

5. Asymmetric waves in a circular cylinder 
We may generalize the analysis of the preceding section by introducing 

q5mk = a-*J,(kr/a) cosh (Kz/a), (5.1) 

in place of q5k and choosing the k in such a way that the &,< constitute a complete 
set of functions for the domain 0 < z < zo(r ) ,  0 < r < a ;  K remains as in (4.3). The 
function q5mk satisfies the differential equation (2.3) and the boundary condition 
(2.7) a t  z = 0, but it satisfies (2.7) a t  r = a if and only if k is a zero of 
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The eigenfunctions given by (5.1) and the zeros of (5.2) form a complete, 
orthogonal set in the limit a = 0, and a repetition of the argument given in the 
preceding section implies that the evanescence of arnk (obtained by approxi- 
mating q5 by the single term q5mk in 0 and choosing k as a zero of F,) yields the 
corresponding eigenvalue with an error of O(a2) .  If we were to include N members 
of this set in the expansion of q5, however, we should be faced with the solution of 
N + 1 simultaneous equations in p and k,, k,, . . ., k,, of which the first N would be 
given by the requirement that k,, . . . , k, be zeros of F, and the last by the require- 
ment that the determinant of the N variational constraints on A,, . . ., A ,  vanish. 
In  fact, we shall obtain explicitly only such approximations as are sufficient to 
exhibit the first order (in w )  effects of rotation and shall invoke the variational 
principle only for gravity waves. 

Considering first, and briefly, gravity waves, we start from the limiting results 

J&(k) = 0, g2 = vi = (kg/a)  tanh (kS) (a = 0). ( 5 . 3 ~ )  b )  

It follows from ( 1 4 ,  (2.4) and (5.3b) that p = O(a9) as a -+ 0 and hence from (5.2) 
that the error in the value of k given by ( 5 . 3 ~ )  also is O(a*), We therefore may use 
this value of k to obtain a variational approximation to (T with an error of O(a).  

Substituting q5mk from (5.1) into (3.2) and (3.3)) neglecting terms of O(a)  and 
O(p2), carrying out the integrations, and invoking (5 .3u) ,  we obtain 

Ornk = $J;(k) cosh2 (IcS) {[(v2a/g) - k tanh (kS)] [l - ( m / l ~ ) ~ ]  

-pm[Ssech2(k8) + k-l tanh (kS)]) + O(a). (5.4) 

Setting a,, = 0 and using (5 .3b ) )  we obtain 

ag = & ~ , + [ 1 + 2 k S ~ s c h ( 2 k S ) ] m ( k ~ - m ~ ) - ~ w + O ( a ~ , , ) .  (5 .5 )  

The result (5 .5 ) ,  which i s  consistent with the planar approximation, agrees with 
the results obtained previously by Rayleigh (1903) for k8-t  0 and by Miles (1959) 
for k& + co. We emphasize, however, that the numerical results given in Table 1 
(where = 2a) of the latter paper are valid only for small a in consequence of the 
planar approximation. 

Turning to asymmetric inertial waves, we may start from the zero’th approxi- 
mation of (4.11 a, b) ,  but now k has to be determined before proceeding to the 
first approximation. Substituting (4.12 b )  into (5.2) and equating the result to 
zero, we obtain the implicit relations 

h(k2) = T[l+(kS,)2]-4+O(a) = - a / 2 w ,  ( 5 . 6 ~ ~  6 )  

where S, is defined by (4.14)) 

and the alternative signs in (5 .6 )  eb seq. are ordered. 
The function h(k2) [see Lamb, p. 323, where h = - y, or Miles (1959), figures 1 

and 2, where h = ha] comprises an infinite sequence of monotonically increasing 
branches with infinite discontinuities at the zeros of J&. The first branch tends 
asymptotically to zero as k2 -+ - cc and passes through ( 0 , l )  ; however, the inter- 
section at  k = 0 and h = 1 yields only a trivial solution (g = - 2w, u = TI = w = 0). 

13 Fluid Mech. 18 
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The remaining branches are located between the successive zeros of J A  and 
pass through the points (kL--l,n, - l), (kk,,, 0) and (kk,,,, + 11, where k,,,, 
denotes the nth zero of J,( k) : 

Jm(k,,n) = 0 (n = 1,3, ...). (5 .8)  
Designating the intersections of f. [I + (kS,)2]* with - h(k2) by k,, we infer that 

(5.9) 
2 

‘ W L - 1 , T k  k? ‘k,n k2_ < ‘ : + l , ? k *  

We also note that h satisfies the Riccati equation 

Bzh’(2) = (m-12 - m) h2 + m. (5.10) 

We may solve (5.6) graphically, numerically (using, for example, the Newton- 
Raphson method), or through expansion in an appropriate parameter; we shall 
consider onIy the last approach. Considering first 6-t 0, we may expand the right- 
hand side of ( 5 . 6 ~ )  about S = 0 and the left-hand side about kk+l,n to obtain 

T i + k m - y ~ - k ; ~ ~ , ~ ~  = T ( ~ - + S ~ ) + O ( I C S J ~ ,  (5.11) 

which yields ‘2 = ( 1  ma;) k;71,n + o(ks~4 (5.12a,) 

and cJ2w = + [ l - @ ~ ( l  +mSi)kk,, ,+#(kmFl,,Sp)4+O(k4S~)]. (5 .12b)  

Turning to deep water, we may expand the right-hand side of ( 5 . 6 ~ )  about 
k8 = 00 and the left-hand side about k;,n to obtain 

i(mIGz,n) (k2-kk,n) = T (k,,,n6,)-1+O(E6,)-3, (5.13) 

which yields k 2  = k;,n T 2(msP)-1k,,,+0(lc-1~,-3) ( 5 . 1 4 ~ )  

and cJ2w = + (k,,nS,)-1~m-1(km,nSp)-2 

k 4(3m-’- 1)  (k, ,n6p)-3+O(kn, (5.14b) 
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